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Sample Size Formula for a Normally Distributed Statistic 
 
Suppose a statistic S is known to be normally distributed with mean ω and variance V/n. 
A hypothesis test having one-sided type I error α/2 might be based on a critical function 
which rejects  H0: ω ≤ ω0 in favor of alternative hypothesis H1: ω > ω0 when 
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The power function for this hypothesis test is then 
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This power function can be used to 

• compute the power β with which the hypothesis test rejects a specific alternative 
ω1 > ω0 when the sample size is at some given value of n; 

• compute the sample size for which a hypothesis test would have prescribed power 
β to detect a specific “design” alternative ω1 > ω0; or 

• compute the alternative ω1 > ω0 which is rejected with prescribed power β when 
performing the hypothesis test with some given sample size n. 

 
For instance, when desiring to compute a sample size such that the hypothesis test has 
power β, we merely want 
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Another approach to sample size estimation is based on the precision with which some 
parameter can be estimated. For instance, a 100(1-α)% confidence interval for ω might be 
computed as 
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If we want the width of the confidence interval to be ω1 - ω0 (so the CI will discriminate 
between the null and alternative hypotheses), then we use sample size formula 
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which corresponds to the same sample size formula as derived from the hypothesis test, 
providing we choose power β = 1 – α/2 (my religion). 
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Modified Sample Size Formula in the Presence of a Mean-Variance Relationship 
 
Suppose a statistic S is known to be normally distributed with mean ω and variance 
V(ω)/n. In this case, the variance of the distribution of S depends upon the mean of that 
distribution—a “mean-variance relationship”. The above formulas need to be modified 
when the variance of the normally distributed statistic depends on the mean. As a general 
rule, most statisticians ignore this issue because either 1) the sample size will be such that 
the variance will not differ by very much over the range of alternatives for which the 
power is, say, between 1% and 99%, or 2) the sample size computation is based on such 
crude estimates of the variability of the data that any error due to ignoring the mean-
variance relationship is negligible, or 3) both. Nevertheless, for completeness I present 
the modified formulas here for mean-variance relationships. In these formulas, I presume 
that the power function is higher at ω0 than at any ω < ω0. I note that there are sample size 
requirements in order to guarantee that the power curve achieves its maximum over the 
null hypothesis region at this boundary between the null and alternative hypotheses. This 
requirement is that for all ω < ω0, we must have 
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This is clearly satisfied when V(ω) is an increasing function of  ω, because in that case, 
the numerator is negative. 
 
Suppose a statistic S is known to be normally distributed with mean ω and variance 
V(ω)/n. A hypothesis test having one-sided type I error α/2 might be based on a critical 
function which rejects  H0: ω ≤ ω0 in favor of alternative hypothesis H1: ω > ω0 when 
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The power function for this hypothesis test is then 
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This power function can be used to 
• compute the power β with which the hypothesis test rejects a specific alternative 

ω1 > ω0 when the sample size is at some given value of n; 
• compute the sample size for which a hypothesis test would have prescribed power 

β to detect a specific “design” alternative ω1 > ω0; or 
• compute the alternative ω1 > ω0 which is rejected with prescribed power β when 

performing the hypothesis test with some given sample size n. 
 
For instance, when desiring to compute a sample size such that the hypothesis test has 
power β, we merely want 
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As before, the choice of power β = 1 – α/2 (my religion) corresponds exactly to choosing 
sample size according to the precision with which some parameter can be estimated as 
judged by a 100(1-α)% confidence interval for ω. 
 
When inverting the above power and/or sample size formulas to find the alternative for 
which a design has prescribed power, it may be the case that an iterative search is 
necessary.  
 
General Sample Size Formula for 1-sample, 2-sample, and Regression Settings 
 
The S+SeqTrial Technical Overview describes a general sample size formula which can 
be used in the data analysis models most commonly used in the analysis of clinical trial 
data. (The notation in this document differs slightly from the notation used in the 
technical overview.) In these models, we let θ represent the measure of treatment effect, 
which is most often a contrast (difference or ratio) of some within group summary 
measure µ computed independently for each treatment arm. Statistical analysis can 
usually be based on an estimate of the treatment effect θ. Most often, either the estimate 
of θ or the logarithmic transformation of θ are approximately normally distributed in a 
fixed sample study (i.e., one without interim analyses). We thus let ω = g(θ) be the 
transformed treatment effect measure which is commonly estimated with an 
approximately normally distributed estimate. The “link” function g( ) is typically the 
identity function (so ω = θ) or the logarithmic transformation (so ω = log (θ)). 
 
We thus assume that the estimate of ω is approximately normally distributed with 
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where V is the (average) variability contributed to the estimate by a single observation, 
and n is the sample size. In general, V can be a function of the within group summary 
measures µ, as well as other “nuisance” parameters that are independent of µ. In the rest 
of this document, we ignore any mean-variance relationship. When implementing these 
formulas, it will generally be necessary to decide whether to make calculations using the 
value of V under the null, alternative, or some intermediate hypothesis. 
 
Suppose we are interested in discriminating between a null hypothesis H0: ω ≤ ω0 and an 
alternative hypothesis H1: ω ≥ ω1 in a hypothesis test having one-sided type I error α/2 
and statistical power β. When the above approximate distribution holds, sample size 
computations are most often effected using 
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where ∆ = ω1 – ω0 and δαβ is a “standardized alternative”, which in a fixed sample study 
(i.e., one without interim analyses) is  δαβ =  z1-α/2 + zβ.  
 
The same general formula can be used in a group sequential test, providing the estimate 
of treatment effect can be viewed as a weighted sum of uncorrelated, approximately 
normally distributed statistics computed on the groups accrued between analyses. This is 
often referred to as “independent increment structure”, and this holds in a wide variety of 
common clinical trial settings. In these group sequential settings, the “standardized 
alternative” must be computed using recursive numerical integration of convolutions of 
densities. (S+SeqTrial will do this for us.)  
 
Use of the General Formula in Common 1-sample Analysis Models 
 

1. Testing  means of continuous distributions: Yi ~ (µ, σ2), i= 1, …, n 
• θ = µ 
• ω = θ 
• V =σ2 

 
2. Testing  geometric means of continuous distributions: log Yi ~ (µ, σ2), i= 1, …, n 

• θ = eµ 
• ω = log ( θ ) 
• V =σ2 

 
3. Testing  proportions of Bernoulli  distributions: Yi ~B (1,µ), i= 1, …, n 

• θ = µ 
• ω = θ 
• V = p(1-p) 

 
Use of the General Formula in Common 2 Independent Sample Analysis Models 
 

1. Testing  means of continuous distributions: Yki ~ (µk, σk
2), i= 1, …, mk ; k= 0,1 

• n = m1 + m0 
• Randomization ratio  r = m1  / m0 
• θ = µ1 – µ0                                                               (difference of means) 
• ω = θ 
• V = (r+1) [ σ1

2 / r + σ0
2  ] 

 
2. Testing  geometric means of continuous distributions: log Yki ~ (µk, σk

2), i= 1, …, 
mk ; k= 0,1 

• n = m1 + m0 
• Randomization ratio  r = m1  / m0 
• θ = exp ( µ1 ) / exp (µ0 )  = exp ( µ1 – µ0 )          (ratio of geometric means) 
• ω = log ( θ ) 
• V = (r+1) [ σ1

2 / r + σ0
2  ] 
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3. Testing  proportions of Bernoulli  distributions: Yki ~B (1, µk ), i= 1, …, mk ; k= 
0,1 

a. n = m1 + m0 
b. Randomization ratio  r = m1  / m0 
c. θ = µ1 – µ0                                                          (difference of proportions) 
d. ω = θ 
e. V = (r+1) [ p1 (1 - p1 ) / r + p0 (1 – p0 )  ]             (under the alternative) 

 
4. Testing odds of Bernoulli distributions: Yki ~B (1, pk ), i= 1, …, mk ; k= 0,1 

a. n = m1 + m0 
b. Randomization ratio  r = m1  / m0 
c. Odds µk = pk / ( 1 – pk )  
d. θ = µ1 / µ0                                                                          (odds ratio) 
e. ω = log ( θ ) 
f. V = (r+1) [1 / ( r p1 (1 - p1 ) ) + 1 / ( p0 (1 – p0 ) ) ]  (under alternative) 

 
5. Testing hazard ratios in survival distributions: Yki ~ Sk(t ) , i= 1, …, mk ; k= 0,1 

• n = number of observed events in both groups combined 
• Randomization ratio  r = m1  / m0 
• Hazard function  hk(t ) = - d ( log Sk(t ) )  
• θ = h1(t ) / h0(t )                                     (constant ratio of hazard functions) 
• ω = log ( θ ) 
• V = (r+1) [ 1 / r + 1  ]                                                  (under the null) 

 
Use of the General Formula in When Comparing Means with Correlated Observations 
 

1. (“Repeated Measures”): Suppose the kth treatment group (k= 0,1) has mk 
independent subjects, each of whom have J measurements, and subjects in 
different groups are independent  

• Ykij ~ (µk, σk
2), k= 0,1, i= 1, …, mk ; j= 1, …, J 

• corr(Ykij, Yk’i’j’)=ρ if k=k’, i=i’, j≠j’ 
• corr(Ykij, Yk’i’j’)=1 if k=k’, i=i’, j=j’ 
• corr(Ykij, Yk’i’j’)=ρ if k≠k’ or i≠i’ 
• Randomization ratio  r = m1  / m0 
• θ = µ1 – µ0                                                               (difference of means) 
• ω = θ 
• V = (r+1) { σ1

2 [1+(J-1)ρ]/(J r) + σ0
2 [1+(J-1)ρ]/J  } 

 
2. (“Crossover”): Suppose m independent pairs of subjects are randomized such that 

one member of each pair is in treatment group 0 and one is in treatment group 1.  
• Yki ~ (µk, σk

2), k= 0,1, i= 1, …, m 
• corr(Yki, Yk’i’)=ρ if k≠k’, i=i’ 
• corr(Yki, Yk’i’)=1 if k=k’, i=i’ 
• corr(Yki, Yk’i’)=ρ if i≠i’ 
• θ = µ1 – µ0                                                               (difference of means) 
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• ω = θ 
• V = { σ1

2 + σ0
2 - 2 ρσ0σ1  } 

 
Use of the General Formula in Common Regression Analysis Models 
 

1. Linear regression (means):  ( Yi | Xi = xi ) ~ (β0+ β1 xi , σ2), i= 1, …, n 
• θ =  E( Y | X = x+1 ) - E ( Y | X = x ) = β1           (linear contrast of means) 
• ω = θ 
• V =  σ2 / Var ( x ) 

 
2. Linear regression on log transformed data (geometric means): ( log Yi | Xi = xi ) ~ 

(β0+ β1 xi , σ2), i= 1, …, n 
• θ =  GM( Y | X = x+1 ) / GM ( Y | X = x ) = exp ( β1 )  
• ω = log ( θ ) 
• V = σ2 / Var ( x ) 

 
3. Logistic regression (odds): Yki ~B (1, pk ), i= 1, …, mk ; k= 0,1 

a. n = m1 + m0 
b. Randomization ratio  r = m1  / m0 
c. Odds µk = pk / ( 1 – pk )  
d. θ = µ1 / µ0                                                                          (odds ratio) 
e. ω = log ( θ ) 
f. V≅ 1 /[ p (1 – p) Var ( x ) ]                   (using an average value for p) 

 
4. Proportional hazards regression (hazard ratios): Yi ~ Si(t ) , i= 1, …, n 

• n = number of observed events in both groups combined  
• Hazard   hi(t | Xi = xi ) = - d ( log Si(t | Xi = xi ) ) = h0(t ) exp (β1 xi ) 
• θ = h(t | X = x +1)  / hi(t | X = x ) = exp (β1 ) 
• ω = log ( θ ) 
• V =1 / Var ( x )                                                  (under the null) 

 
Sample Size Formula for K-sample Setting 
 
The S+SeqTrial Technical Overview also provides a sample size formula appropriate 
when comparing means or geometric means across K independent samples in a fixed 
sample (no interim analyses) setting. In this setting, we again use some consider some 
within group summary measure µk computed independently for the kth treatment arm, 
k=1,…,K. The null and alternative hypotheses are classically stated as H0: µ1 = µ2 =  …  = 
µK  and H1: µi = µj for some i,j. Testing of the hypotheses is generally based on the 
variance of the within group summary measures. That is, the parameter measuring 
treatment effect is θ = Var((µ1, µ2,…, µK )). When all groups have equal summary 
measures, this variance is 0. When the alternative hypothesis is true, the variance across 
the group summary measures is nonzero. 
 

  2005.04.11 



  2005.04.11 

The exact formula and code used to compute sample sizes in the K-sample setting is 
given in the technical overview. 
 
Using S+SeqTrial to Compute Number of Events for Proportional Hazards Models 
 
S+SeqTrial provides explicit functions for the computation of sample sizes in the two 
sample setting for both fixed sample and group sequential trials using the proportional 
hazards model. Although no explicit facility is provided for proportional hazards 
regression with a continuous predictor, examination of the results given above for the 
geometric mean and hazard ratio regressions reveals a similarity of the formulas. In fact,  
we merely need to use the geometric mean model with a standard deviation of 1 in order 
to estimate the number of observed events needed for the proportional hazards model.  
 
This also suggests that when planning to use the K-sample logrank statistic, we can 
merely use the geometric mean model in order to find the number of events needed to 
provide desired power. In this case, we can use the command line functions (there is a 
bug in the dialog) to provide a vector of hazard ratios across the K groups. All hazard 
ratios should be specified relative to the control group, and it will be necessary to include 
a hazard ratio of 1 reflecting the comparison of the control group to itself. 
 
Computing the Number of Subjects to Accrue to a Survival Study 
 
The above sample size formulas for proportional hazards models provide the number of 
events needed, rather than the number of subjects. Several approximate approaches are 
used to determine the number of subjects to accrue: 
 

1. Assume that subjects are accrued uniformly over, say, (0,a), and that data analysis 
will occur at time τ+a. Further assume exponential survival distribution (a 
constant hazard) in each group. We can then derive the probability of a subject 
having an event by the time of analysis, and by dividing the number of events by 
that probability, derive the number of subjects to accrue. (see S+SeqTrial 
Technical Overview). 

2. Under the same assumptions, use the rate of observed events and the average time 
of follow-up in a Poisson type model. 

 


